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44 Abstract

45 Regional analyses assessing the vulnerabilities of forest ecosystems and the forest sector 
46 to climate change are key to consider the heterogeneity of climate change impacts but 
47 also the fact that risks, opportunities and adaptation capacities might differ regionally. 
48 Here we provide the Regional Integrated Assessment of climate change on Quebec’s 
49 forests, a work that involved several research teams and that focused on climate change 
50 impacts on Quebec’s commercial forests and on potential adaptation solutions. Our work 
51 showed that climate change will alter several ecological processes within Quebec’s 
52 forests. These changes will result in important modifications in forest landscapes. Harvest 
53 will cumulate with climate change effects to further alter future forest landscapes which 
54 will also have consequences on wildlife habitat (including woodland caribou habitat), 
55 avian biodiversity, carbon budget and a variety of forest landscape values for Indigenous 
56 peoples. The adaptation of the forest sector, will be crucial to mitigate the impacts of 
57 climate change on forest ecosystem goods and services and improve their resilience. 
58 Moving forward, a broad range of adaptation measures, notably through reducing harvest 
59 levels, should be explored to help strike a balance among social, ecological and economic 
60 values. We conclude that without climate adaptation strong negative economical and 
61 ecological impacts will likely affect Quebec’s forests.

62 Keywords: Québec, boreal forest, synthesis, ecosystem services, regional analyses

63 RÉSUMÉ

64 Les analyses régionales évaluant la vulnérabilité des écosystèmes forestiers et du secteur 
65 forestier aux changements climatiques sont essentielles pour prendre en compte 
66 l'hétérogénéité des impacts des changements climatiques, mais aussi le fait que les 
67 risques, les opportunités et les capacités d'adaptation peuvent différer d'une région à 
68 l'autre. Nous présentons ici l'évaluation régionale intégrée des changements climatiques 
69 sur les forêts du Québec, un travail qui a impliqué plusieurs équipes de recherche et qui 
70 s'est concentré sur les impacts des changements climatiques sur les forêts commerciales 
71 du Québec et sur les solutions d'adaptation à ces changements. Nos travaux montrent que 
72 les changements climatiques pourraient modifier plusieurs processus écologiques dans les 
73 forêts du Québec. Ces changements entraîneront d'importantes modifications des 
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74 paysages forestiers. La récolte forestière pourrait s’additionner aux changements 
75 climatiques pour modifier davantage les futurs paysages forestiers, ce qui pourrait 
76 également avoir des conséquences sur les habitats fauniques (notamment ceux du caribou 
77 forestier), la biodiversité aviaire, le bilan carbone et les valeurs des paysages forestiers 
78 pour les Peuples autochtones. Nous préconisons que l'adaptation du secteur forestier sera 
79 essentielle afin d’atténuer les impacts des changements climatiques sur plusieurs biens et 
80 services écosystémiques forestiers. Ces stratégies devraient améliorer la résilience des 
81 services écosystémiques. Par exemple, la réduction de la récolte pourrait permettre de 
82 maintenir l'habitat du caribou, favoriser la biodiversité aviaire, bonifier la capacité de 
83 stockage du carbone et profiter aux activités traditionnelles autochtones. La réduction des 
84 taux de récolte du bois pourrait aussi aider à réduire les échecs de régénération après les 
85 feux dans les régions où ceux-ci sont actuellement communs, ou dans celles qui seront à 
86 risque dans le futur. Sur la base de nos travaux, nous concluons qu’omettre de mettre en 
87 œuvre des options d'adaptation aux changements climatiques pourrait représenter des 
88 impacts économiques et écologiques négatifs importants pour les forêts du Québec.

89 Mots-clés : Québec, forêt boréale, synthèse, services écosystémiques, analyses régionales

90

91

92
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93

94 1. Introduction

95 The science is clear: human-caused climate change has been warming the planet by 1.1°C 

96 since 1880, with a recent rate of increase of 0.18°C per decade since 1981 (IPCC 2021, 

97 NOAA 2021). The 2011-2020 decade was the hottest ever recorded since 1880 and the 

98 six warmest years on record are all after 2015 (World Meteorological Organization 

99 2021). In Canada, land surface temperatures have increased twice as fast as global rates 

100 (mean +1.7°C for Canada vs 0.8°C for the globe for the 1948-2012 period), with the 

101 largest increases recorded during winter and in the northernmost part of the country 

102 (Bush and Lemmen 2019). Projections of future temperature and precipitation for the 

103 upcoming decades are causes for concern (Bush and Lemmen 2019). Such an alteration 

104 of climate conditions by the end of this century is likely to strongly affect wildlife and 

105 ecosystems, as well as our economies, societies, and cultures (IPCC 2021).

106 Forests are one of the ecosystems that are most likely to be significantly impacted by 

107 climate change (Bernier and Schoene 2009, Gauthier et al. 2015a), either directly - 

108 through tree physiological changes - or indirectly through changes in natural 

109 disturbances. For instance, the significant increases in annual area burned observed in 

110 western Canada since the 1970s are strongly linked to the concurrent increase in 

111 temperatures (Gillett et al. 2004, Hanes et al. 2019). Similarly, several catastrophic fire-

112 related events, like those that occurred in the last decade in Canada (e.g. the 2016 Fort 

113 McMurray Fire, the 2017 fire season in British Columbia, the 2021 heat wave that 

114 triggered massive wildfires in northwestern North America), were shown to be 
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115 increasingly likely under stronger anthropogenic radiative forcing (Kirchmeier-Young et 

116 al. 2017, 2019, Philip et al. in review). Future climate-induced lengthening of the fire 

117 season as well as the increase in fire-prone weather conditions could further contribute to 

118 a 2- to 4-fold increase in annual area burned by the end of the century in most regions of 

119 Canada (Flannigan et al. 2005, Boulanger et al. 2014). Furthermore, alteration of climate 

120 conditions have already contributed to changing insect outbreak regimes (Pureswaran et 

121 al. 2015), increasing drought-related mortality of trees (Hogg and Bernier 2005, 

122 Michaelian et al. 2011, Peng et al. 2011, Hogg et al. 2017), and altering tree productivity 

123 over extensive regions of boreal Canada (Chen and Luo 2015, Girardin et al. 2016). As a 

124 result, forest composition and structure (Steenberg et al. 2013, Boulanger et al. 2016a, 

125 Searle and Chen 2017, Taylor et al. 2017) could be strongly modified with global 

126 warming, potentially leading to biome shifts (Boisvert-Marsh et al. 2014, Périé et al. 

127 2014, Stralberg et al. 2018, Brice et al. 2019, Whitman et al. 2019).  

128 Climate-induced changes in forest and northern ecosystems could strongly impact forest 

129 value and economy in the future (Williamson et al. 2009, Price et al. 2013, Gauthier et al. 

130 2014, 2015b, Boucher et al. 2018) with tangible risks of ecological (e.g., species 

131 extinction, ecosystem collapse) and societal disruptions (Duerden 2004, Hope et al. 

132 2016). The forest industry sector contributed $23.7 billion in 2019 Canada’s GDP 

133 (NRCan 2021), placing the country first in the world’s forest product trade balance 

134 (NRCan 2020). Forest contribution to the economy also arises from the variety of 

135 ecosystem services it provides to human populations, including food and material 

136 provision as well as sustaining cultures and knowledge. Although temporary climate-

137 induced increase in forest productivity could benefit the industry (D’Orangeville et al. 
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138 2018), financial losses in the long term could be colossal, with many direct and indirect 

139 jobs at stake, including in remote and mono-industrial regions. 

140 In this context, assessing the vulnerabilities of forest ecosystems and the forest sector to 

141 climate change is required. Such an analysis requires a holistic and integrated approach. 

142 Regional analyses are key as they take into account the heterogeneity of climate change 

143 impacts across broad spatial scales. They also factor in differences in risks, opportunities 

144 and adaptation capacities across regions (Williamson et al. 2008). As a result, regional 

145 analyses help develop local-scale adaptation solutions to mitigate the global-scale 

146 impacts of climate change on ecosystem services (Millar et al. 2007, Williamson et al. 

147 2008, Edwards and Hirsch 2012, Gauthier et al. 2014, Nagel et al. 2017, Splawinski et al. 

148 2019 a, c, Cyr et al. 2021). 

149 Between 2017 and 2021, the Canadian Forest Service of Natural Resources Canada 

150 partnered with local, regional, provincial, and federal agencies, as well as academia, 

151 industrial stakeholders, and Indigenous communities to lead five Regional Integrated 

152 Assessments (RIA) across Canada. RIAs aimed to generate new models, monitor climate 

153 change, establish reference conditions and inform forest management in different regions 

154 in Canada. (Further information about RIAs can be found at 

155 https://ca.nfis.org/forestchange/StoryMap_EN/Regional.html). More specifically, one of 

156 these RIAs was to assess the impact of climate change on Quebec’s forests, ecosystem 

157 services, and the forestry sector (Quebec’s RIA). The objectives of this RIA was i) to 

158 identify vulnerabilities of Quebec’s forests to climate change (e.g., productivity, natural 

159 disturbances, forest landscapes), ii) identify specific ecosystem services potentially at risk 

160 (e.g., biodiversity, carbon, timber supply, Indigenous provisioning and cultural values) as 
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161 well as iii) to explore potential adaptation strategies to mitigate previously identified 

162 vulnerabilities. The great majority of individual projects within the RIA has been 

163 published (see Figure 1 for references). Here we summarize and, most importantly, 

164 integrate the work carried out under Quebec's RIA to provide readers a synthesis of the 

165 transdisciplinary studies that were carried out within this project.  By doing so, we 

166 present how the assessment helped improve our understanding of climate change 

167 vulnerabilities of Quebec’s forests and we present analyses of potential adaptive 

168 strategies to minimize these impacts. Although results are specific to Quebec, we believe 

169 that the general framework within which this project was carried out could be transposed 

170 to any forest regions around the globe that wish to develop climate change adaptation 

171 strategies.

172 1.2 Area covered by the study area

173 Areas covered by Quebec’s RIA mostly lie within forests subject to industrial timber 

174 harvesting in Quebec (hereafter the commercial forest, Figure 1a). The broad study area 

175 covered a vast diversity of forest ecosystems. Temperate forest, dominated by diverse 

176 broadleaf species (e.g., Acer spp., Fagus grandifolia Ehrh., Quercus spp., Betula 

177 alleghaniensis Britt.), occurrs in the southern part of the region, whereas conifer-

178 dominated (e.g., balsam fir [Abies balsamea (L.) Mill.], jack pine [Pinus banksiana 

179 Lamb.], spruces [Picea spp.]) boreal forests extended to the northern part. The study area 

180 covered wide latitudinal and longitudinal temperature and precipitation gradients, with 

181 mean annual temperatures ranging from 6.6°C (south) to -3.1°C (north) and total annual 

182 precipitation ranging from 600 mm (west) to 1200 mm (east) (Ouranos 2015). 
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183 The great majority of the climate projections conducted within the RIA were run under 

184 two different radiative forcing scenarios, known as Representative Concentration 

185 Pathways (RCP, e.g., van Vuuren et al. 2011), i.e., RCP 4.5 and RCP 8.5. The RCP 4.5 

186 scenario involves a stabilization of radiative forcing at 4.5 W/m2 after 2100, without any 

187 "overshoot" pathway. In contrast, the RCP 8.5 scenario involves a radiative forcing of 8.5 

188 W/m2 in 2100, which then continues to rise for an indefinite period of time. Although 

189 recent analyses suggested that the RCP 8.5 scenario is less likely than first anticipated 

190 (Hausfather and Peters 2020), we used these two projections to consider a range of 

191 potential outcomes (Schwalm et al., 2020). According to the CanESM2 model, mean 

192 annual temperatures are expected to increase on average by 3.5˚C (RCP 4.5) to 7.5˚C 

193 (RCP 8.5) and precipitations by 7% (RCP 8.5) to 10% (RCP 4.5) by 2100, compared to 

194 year 2000. Such alterations of climate regimes would suggest a 300-km northward 

195 displacement of ombrotrophic envelopes, i.e., zones defined by mean temperatures and 

196 precipitations, under RCP 8.5 (Périé et al. 2014, Grondin et al. 2022, Chalumeau et al. 

197 submitted). 

198 The forest sector is currently one of the most important industries in Québec, representing 

199 $CAN 20.6 MM of domestic economic impact in 2020 (NRCan 2022). Managed forests 

200 covers 58.3 Mha from which 43.4 Mha are considered as productive. Approximately 92% 

201 of the managed forests are public. During the 2013-18 period, approximately 181 000 ha 

202 were harvested annually on average on public lands under management, representing a 

203 mean rate of 0.7%.yr-1 (MFFP 2019a). In the province, forest management in Quebec is 

204 guided by the principles of sustainable development and is intended to ensure the long-

205 term productivity of the forest. This involves a range of activities, including the planning 
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206 and implementation of harvesting operations, the regeneration of harvested areas and the 

207 protection of forests from pests and fires. In Quebec, the management of public forests is 

208 the responsibility of the Ministry of Natural Resources and Forests, while the 

209 management of private forests is the responsibility of the owners. In Québec, forest 

210 companies have contracts signed with the provincial government that guarantee the 

211 access to a given volume of wood and set ethical guidelines and regulations for the 

212 harvesting operations. The rate of timber harvest varies and tends to be higher with larger 

213 cutblocks and higher proportions of biomass harvested as one moves towards the higher 

214 latitudes. On public lands, the great majority of stands located in the southern part of the 

215 study area, within the temperate region, are partially harvested by means of single-tree 

216 and small-patch harvesting. In more northern locations, clearcuts, mostly those with 

217 protection of the regeneration and soils (which typically remove trees larger than 9 cm of 

218 diameter at breast height) might represent more than 90% of the prescriptions (MFFP 

219 2019). In this area, clearcut patches reaching a maximum of 150 ha are frequently 

220 agglomerated in patches that could reach a maximum of 15 000 ha (Loi sur 

221 l’aménagement durable du territoire forestier, chap A-18.1, a. 38, 39 and 44). Natural 

222 regeneration is favored but planting is advocated in poorly regenerated stands following 

223 disturbances. A total of 64,868 ha was planted in 2020 within Québec’s managed forests 

224 (NRCan 2022). Partial harvesting, notably shelterwood logging, also occur in a lesser 

225 proportion mainly within black spruce and balsam fir stands. Pre-commercial and 

226 commercial thinnings are frequently performed to reduce density and favor growth 

227 during stand development (Laplante 2009). 
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228 In some projects, the study area covered most of the commercial forest study area 

229 (Boulanger and Pascual 2021, Boulanger et al. 2021, Leblond et al. 2022) whereas others 

230 focused on smaller regions projected to experience specific climate-induced 

231 vulnerabilities (e.g., Splawinski et al. 2019a, c, Cyr et al. 2021, Landry et al. 2021, 

232 Moreau et al. 2022).

233

234 Figure 1. Location of each individual projects included in the RIA. Region a: De 
235 Grandpré et al. (2019), Boulanger and Pascual Puigdevall (2021), Boulanger et al. 
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236 (2021), Leblond et al. (2022). Also corresponds to the Quebec’s managed forest as well 
237 as the intensive protection zone for fire suppression; Region b: Cyr et al. (2021); Region 
238 c: FEC (2021); Region d: Landry et al. (2021); Regions e1 and e2: Moreau et al. (2022), 
239 Labadie et al. (in prep.); Region f: Labadie (2022).  Regions g1 (Abitibiwinni) and g2 
240 (Ouje-Bougoumou): Bélisle (2022). Forest region (Boreal, Mixed, Temperate) shapefile 
241 available from https://www.foretouverte.gouv.qc.ca/ . 

242 2. Assessing the vulnerability of Quebec’s forests to climate change

243 2.1. Climate change will alter forest productivity and stand dynamics

244 Previous work conducted within Quebec’s RIA (Girardin et al. 2016, Boakye et al. 

245 2021, Marchand et al. 2021, Pau et al. 2022) area showed that warmer temperatures and 

246 increased drought severity can affect several tree physiological processes (e.g., 

247 photosynthesis, respiration). These could in turn alter tree productivity, regeneration, 

248 phenology, stem growth, and mortality rates. Such alterations will be highly contingent 

249 on the regional context, the level of anthropogenic radiative forcing (Huang et al. 2013, 

250 D’Orangeville et al. 2018, Pau et al. 2022), and species composition. For instance, 

251 climate change could be either detrimental (Girardin et al. 2016) or beneficial (Huang et 

252 al. 2013, D’Orangeville et al. 2018) for boreal conifer productivity. Locally, soil 

253 conditions (e.g., water holding capacity, soil depth, nitrogen conditions) are also likely to 

254 play a significant role in altering future tree’s productivity (Taylor et al. 2017).

255 We conducted additional analyses within the RIA study area (Figure 1, region a) to better 

256 identify which tree species growth could be most altered by climate change. Analyses 

257 showed that in 2100, strong climate forcing could alter boreal species growth (mostly 

258 spruce, pine, larch and balsam fir) throughout the study area, but mostly in the southern 

259 part of our study area, i.e., within the mixedwood and temperate forests) (Figure 2i). 
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260 Conversely, thermophilous species, i.e., those associated with relatively warmer 

261 conditions (mostly Acer rubrum, Quercus rubra, Tsuga canadensis, F. grandifolia), are 

262 expected to experience increased potential productivity and growth (Figure 2i), notably at 

263 the leading edge of their current distribution and beyond under moderate anthropogenic 

264 radiative forcing. Such climate-induced decreases in boreal species productivity might 

265 trigger a “climatic debt” (Taylor et al. 2017): increased productivity in thermophilous 

266 species will be unable to compensate for productivity declines in co-occurring boreal 

267 species. As shown later in this paper, extensive productivity loss is likely to affect species 

268 competitive abilities leading to composition shifts (Fisichelli et al. 2014, Reich et al. 

269 2015) as well as reduced timber volumes (Brecka et al. 2020). 

270 2.2. Natural disturbance regimes will change: a review

271 Even though no additional research on projections of natural disturbances were 

272 conducted within the RIA, these need to be reviewed here in order to better understand 

273 future forest vulnerabilities. Indeed, natural disturbances, which many are stand-

274 replacing, are strongly driving forest dynamics in boreal Quebec. As virtually all natural 

275 disturbances are partially or completely weather- or climate-driven, any changes in these 

276 conditions will affect their temporal and spatial distribution, as well as their severity 

277 regimes. 

278 Here we focus on two major natural disturbances that are known to impact forest 

279 landscapes within the RIA’s study area: wildfires and spruce budworm (Choristoneura 

280 fumiferana [Clem.]; SBW) outbreaks. Since the last three decades, annual area burned 

281 averages 72 000 ha (0.12%.yr-1) within Quebec’s managed forests (MFFP 2020). 
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282 Typically, wildfires are more common along a south-to-north and an east-to-west 

283 gradient, mostly following the precipitation gradient. Wildfires are most common within 

284 the westernmost Boreal region, especially within black spruce and jack pine stands, 

285 where the regional fire cycle is 120 years (Couillard et al. 2022). Stand-replacing, 

286 lightning-caused fires are responsible for most of the annual area burned within the 

287 boreal forest. The entirety of the RIA study area is under intensive forest fire suppression 

288 (MFFP 2019b) although suppression success is higher in the southern regions (Cardil et 

289 al. 2019). In this latter regions, annual area burned is rather low (fire cycle exceeding 800 

290 years) and caused by small (<10 ha) and mostly anthropogenic fires.  The entirety of the 

291 RIA study area is under intensive forest fire suppression. Severe impacts of spruce 

292 budworm outbreaks occur mostly within the mixed and the southern part of the boreal 

293 forest regions according to a 35-year recurrence cycle on average since the last 400 years 

294 (Boulanger et al. 2012). Most vulnerable host species are by a decreasing order balsam 

295 fir, white spruce, red spruce and black spruce, for which multi-year severe defoliation can 

296 cause important growth reduction and ultimately result in host mortality over extensive 

297 areas. A major outbreak covering more than 55 Mha affected mixed and conifer forests of 

298 northeastern North America (including 32.3 Mha in Quebec) between 1967 and 1992. 

299 The latest SBW outbreak in Quebec began in 2004 and is currently (as of 2022) affecting 

300 approximately 9.1 Mha of forest, decreasing from 13.5 Mha recorded in 2020 (MRNF 

301 2022).  

302 Previous analyses have shown that fire activity during the 20th century strongly decreased 

303 in Quebec when compared with the preindustrial era (Bergeron et al. 2006), which is 

304 consistent with a concomitant decrease in summer drought intensity (Girardin et al. 
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305 2009). Conversely, weather conditions in Quebec during recent decades are increasingly 

306 more conducive to fires (Wasneem et al. in prep.), although not as markedly as in western 

307 Canada (Jain et al. 2017, 2022, Chavardes et al 2022, Ellis et al. 2022). Future warming 

308 would further contribute to increased fire-conducive conditions through an increase in 

309 spread days (Wang et al. 2017), moisture deficit and fire season length. As a result, 

310 previous analyses (Boulanger et al. 2014, Gauthier et al. 2015b) have shown that fire 

311 activity would greatly increase under strong anthropogenic forcing (Boulanger et al. 

312 2014, Gauthier et al. 2015b, Boulanger et al. 2018) but mainly within the boreal portion 

313 of the study area (Figures 2ii ). Important alterations in fire regimes could occur as soon 

314 as in 2040, especially in northwest Quebec (Boulanger et al. 2014). Such an extreme 

315 scenario could result in fire cycles not experienced by forest during all the Holocene 

316 (Bergeron et al. 2010). 

317 In addition, climate change is likely to change pest distribution ranges and severity 

318 (Régnière et al. 2012, Lehmann et al. 2020). Native species like the SBW are predicted to 

319 shift their distribution northward as climate warms, thus potentially impacting 

320 ecosystems that were previously spared from their effects (Régnière et al. 2012; 

321 Pureswaran et al. 2015). The primary SBW host, balsam fir, is abundant in its current 

322 distribution range, but is gradually being replaced at higher latitudes by black spruce 

323 (Picea mariana [Mill.] BSP), a secondary host. When considering the current 

324 vulnerability of these hosts as well as climate change, volumes at risk to SBW (Boucher 

325 et al. 2018) would strongly decrease throughout the RIA’s study area (Figure 2iii ) 

326 because of a “mismatch” between host distribution and the future northward 

327 displacement of the SBW climate envelope (Boulanger et al. 2016b). Climate-induced 
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328 reduction in SBW volume at risk could thus “relax” future SBW outbreak impacts on 

329 forest landscapes compared with those observed under historical climates although high 

330 uncertainty remains (Boulanger et al. 2016b).  

331 The northward transition to less vulnerable forest composition was thought to represent a 

332 barrier preventing major SBW damages in northern forests. However, it was shown that 

333 future host vulnerability to SBW might be greatly altered (Pureswaran et al. 2015), which 

334 might completely modify the impacts this insect could have on future forest landscapes. 

335 For instance, there is a potential for increased phenological synchrony between larval 

336 emergence and budburst of black spruce (Pureswaran 2015; Pureswaran et al 2019). 

337 Climate warming could reduce the lag in budburst phenology between balsam fir and 

338 black spruce, thus increasing the vulnerability of black spruce to SBW defoliation 

339 (Correia et al. in prep.). Furthermore, larval winter survival in black-spruce dominated 

340 forests (Berthiaume et al. 2020) is expected to increase, as winters will become milder in 

341 the future. Altogether, these changes could help sustain defoliation events at levels in 

342 northern forest ecosystems that will result in tree mortality, with unknown consequences 

343 on regional forest composition. These SBW defoliation events could interact with 

344 drought stress with the potential of causing severe black spruce mortality (De Grandpré et 

345 al. 2019) as it is currently observed in the North-Shore region of Quebec. Such impacts 

346 have yet to be fully understood and included in models projecting changes in forest 

347 landscapes as well as on other ecosystem goods and services. Despite this relative 

348 uncertainty, recent examples (e.g., mountain pine beetle in western Canada [Safranyik et 

349 al. 2010], winter and autumnal moths in northern Fennoscandia [Jepsen et al. 2008, 2022] 

350 and hemlock looper in central Québec [Béland et al. 2022]) have shown that stakeholders 
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351 must be ready for unexpected climate-induced impacts of insect pests on boreal forest 

352 landscapes. 

353 2.3. Cumulative impacts of climate-induced changes in stand dynamics and natural 

354 disturbance regimes will modify forest landscapes

355 The above-mentioned evidence suggests that climate change could alter Quebec’s forest 

356 productivity, stand dynamics, and natural disturbance regimes. Because forest ecosystems 

357 are complex and highly dynamic (Messier et al. 2019), these climate-induced impacts are 

358 likely to strongly cumulate and interact. Therefore, these processes cannot be considered 

359 in isolation when assessing the vulnerabilities of future forest landscapes to climate 

360 change. For instance, climate-induced changes in forest productivity could modify 

361 species competitive ability and forest composition (Reich et al. 2015), which could in 

362 turn affect insect outbreak severity (Boulanger et al. 2016a) and landscape flammability 

363 (Dawe et al. 2022). Forest harvesting could also interact with climate change to further 

364 modify forest landscapes (Cyr et al. 2021, Splawinski et al. 2019a, Leblond et al. in 

365 2022). Moreover, these processes are likely to interact across different spatial and 

366 temporal scales and are expected to differ regionally (Boucher et al. 2018) according to 

367 climate change amplitude and specific features of the biophysical environment such as 

368 soil, initial conditions, forest legacy, dispersal limitations, and physical barriers to fire 

369 spread.

370 We assessed the cumulative impacts of these agents of change on RIA’s forests (Figure 1, 

371 region a) by running spatially explicit forest landscape simulations. Analyses showed that 

372 most boreal conifer species would experience strong decreases in aboveground biomass, 
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373 particularly in the southern parts of the study area (Figure 2iv) (Boulanger et al. 2021, 

374 Boulanger and Pascual Puigdevall 2021). Such climate-induced declines in competitive 

375 ability by boreal species (Fisichelli et al. 2014, Reich et al. 2015) would favor deciduous 

376 species (Figure 2iv), many of which are thermophilous. Projected changes in tree species 

377 aboveground biomass reflect an acceleration of species turnover rate within the mixed 

378 and temperate forests (Boulanger and Pascual Puigdevall 2021), a trend already observed 

379 in Quebec (Brice et al. 2019, 2020). Although northern parts of the study area could 

380 become more suitable for deciduous species, dispersal limitations (Sittaro et al. 2017, 

381 Vissault et al. 2020), trophic interactions (Boulangeat et al. 2018), as well as increased 

382 disturbance rates will likely slow down the northward colonization by these species and 

383 prevent a full compensation for boreal species decline. Locally, unfavorable legacy soil 

384 conditions of conifer-dominated forests could also impede the northward migration of 

385 thermophilous tree species through the boreal forest (Lafleur et al. 2010, Carteron et al. 

386 2020). The increase in fire activity, mostly within the northwestern part of the boreal 

387 forest, greatly contributes to boreal’s reduction in aboveground biomass by decreasing 

388 mean stand age and productivity (Splawinski et al. 2019a, Cyr et al. 2021, Boulanger and 

389 Pascual Puigdevall 2021). Concomitantly, progressively shorter fire cycles will promote 

390 succession towards pioneer species, such as trembling aspen, that can take advantage of 

391 warmer soil conditions following fire and regenerate asexually (Greene et al. 1999).
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392

393 Figure 2. Impacts of climate scenarios (baseline, RCP 4.5 and RCP 8.5) on productivity 
394 (potential maximum aboveground biomass; i), on annual area burned (ii) and on volumes 
395 at risk to spruce budworm outbreaks (iii). Cumulative impacts on aboveground biomass 
396 of deciduous and conifer species are also shown in iv. Results are shown for either the 
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397 boreal (left column) or the temperate and mixed forest regions (right column). Note that 
398 in iii, volume at risk to SBW is virtually nil under RCP 8.5. i from Boulanger and Pascual 
399 Puigdevall (2021); ii from a modified version of Boulanger et al. (2014) models; iii from 
400 Boucher et al. (2018); iv from Boulanger and Pascual Puigdevall (2021). Readers can 
401 refer to figure 1 for forest regions. 

402 The latter results were obtained through the use of one forest landscape model, namely 

403 LANDIS-II (Boulanger and Pascual Puigdevall 2021). However, many additional models 

404 have been developed to assess the impact of climate change. Examining a suite of model 

405 projections could benefit the RIA as it helps quantify uncertainty but also assess to what 

406 extent models are agreeing when projecting future forest conditions. Stakeholders faced 

407 with different model projections may hence find it more convenient to turn to multimodel 

408 assessments for decision-making and the development of strategies to adapt forest 

409 management. Following these results, we conducted a multimodel analysis in which 

410 seven models were used to assess the performance of several tree species under climate 

411 change in the RIA’s study area (Boulanger et al. 2021). Despite a wide diversity of model 

412 types, we found a high level of agreement (in 73.1% of the area) in projected species’ 

413 performance across regions, scenarios, and time periods (Boulanger et al. 2021). These 

414 models confirmed that the performance of boreal conifer species will be severely affected 

415 by strong climate change, especially in the temperate and mixed forest regions while 

416 deciduous thermophilous species, such as sugar maple, will perform better within its 

417 current range (Figure 3).

418 Despite the models’ differing assumptions, strong agreement between models, predictors, 

419 and structure contributed to the development of a solid foundation on which projections 

420 of future impacts of climate change on forest ecosystem services were assessed in the 

421 RIA. For instance, these results helped emphasize that cumulative climate-induced 
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422 changes will make boreal regions more vulnerable to climate change, especially in the 

423 central and northwestern part of the commercial forest in the province (Boulanger and 

424 Pascual Puigdevall 2021). As such, these results triggered further vulnerability 

425 assessments for specific ecosystem services in these areas (see sections 3.1, 3.3 and 3.4 

426 for instance).

427
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428 Figure 3. Model ensemble agreement classes (%) per species, and forest region 
429 (Temperate + Mixed and Boreal). Green tones: Improvement; yellow tones: status quo; 
430 red tones: decline. Results are compiled under the RCP 4.5 and RCP 8.5 climate 
431 scenarios. Modified from Boulanger et al. (2021). Bars only show when at least 40% of 
432 the models agreed for a given species and cell. As such, overall agreement was low for 
433 sugar maple and yellow birch in the boreal region, especially under RCP 4.5.  

434

435 3. Cumulative climate-induced changes in forest landscapes may impact 

436 ecosystem services

437 3.1. Impacts on forest harvesting

438

439 Previous assessments performed at the country scale (e.g., Gauthier et al. 2015b, 

440 Boulanger et al. 2017, Boucher et al. 2018) have suggested that ecosystems may be 

441 unable to sustain current harvesting rates within many forest management units (FMU) as 

442 a result of climate-induced increases in fire activity. Further investigations were 

443 conducted in the northwestern part of the commercial forest in Quebec to better quantify 

444 climate-induced impacts on harvested volumes. In this area, black spruce and jack pine 

445 dominate the landscape (Payette 1992). These species are well-adapted to frequent fires, 

446 typically following a self-replacement dynamic over time (Viereck and Johnson 1990). 

447 However, their resilience, i.e., their ability to recover pre-disturbance forest attributes 

448 after forest disturbance, is limited by the frequency and severity of fire events (Pinno et 

449 al. 2013, Splawinski et al. 2019a,c, Baltzer et al. 2021), which are projected to increase 

450 over the next century (Flannigan et al. 2005, Boulanger et al. 2014). Analyses conducted 

451 within the northwest (Figure 1, region b) and central RIA study area (Figure 1, region c) 
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452 revealed that regions that are already characterized by a relatively short fire interval and 

453 low productivity will be increasingly vulnerable to regeneration failure with changes in 

454 burn rate (Splawinski et al. 2019a,c, Cyr et al. 2021, Forestier en Chef 2021a), with 

455 regeneration failures that could cover more than 30% of the territory by 2100 under RCP 

456 8.5 (Figures 4i and 4ii).  Such changes will promote an important switch from boreal 

457 forest landscapes to unproductive open woodlands (Splawinski et al. 2019a, Cyr et al. 

458 2021), hindering the recruitment of trees and maintaining low stand density over time 

459 (Splawinski et al. 2018) that could in turn alter future timber harvesting. In this context, 

460 we assessed the joint impact of climate-induced increases in burn rates as well as harvest 

461 on various productivity variables in these two regions.

462

463 In the study area located in northwestern Quebec, the results showed a loss of landscape 

464 productivity mostly due to post-fire regeneration failure over the course of the 150-year 

465 simulation period. Landscape vulnerability to future regeneration failure was defined as 

466 the proportion of productive forest that would shift to a non-productive state (<30m3/ha 

467 of merchantable volume at 120 years of age) in the event of a fire that would burn the 

468 entire simulated area. With no intervention to mitigate these regeneration failures, future 

469 fire regimes were predicted to considerably increase the cumulative loss of productive 

470 forest area compared to the current fire regime, with only a negligible additional impact 

471 of harvesting and salvage logging. As most harvesting activities occur in mature 

472 productive forests, the result was a decline in the average stand potential productivity, 

473 ranging from 65.6 to 50.1 m3/ha under the current fire regime and from 65.6 to 34.9 

474 m3/ha under the future fire regime (Figure 4iii, Cyr et al. 2021). Similar results were 
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475 obtained in central Quebec where increased fire activity was also predicted to result in a 

476 sharp increase in non-regenerating areas (Forestier en Chef 2021). Under a business-as-

477 usual harvest strategy, short-term climate-induced gains in productivity, notably for 

478 deciduous species (D’Orangeville et al. 2018), did not compensate for the fire-induced 

479 losses in wood volume. Indeed, maximum sustained yields under RCP 4.5 and RCP 8.5 

480 were, respectively, 33% and 60% below baseline sustained yield harvest rates (Figure 

481 4iv). 

482

483 Taken together, these climate-induced impacts will considerably reduce forest landscape 

484 productivity and, consequently, the ability to maintain current harvesting levels if no 

485 further interventions or adaptive actions are undertaken. As a result, timber volume and 

486 quality in the boreal forest are expected to negatively influence the wood supply chain 

487 (Irland et al. 2001, Williamson et al. 2009, Gauthier et al. 2015b), with potential timber 

488 supply shortages becoming more common due to decreasing harvestable volumes (e.g., 

489 McKenney et al. 2016, Daniel et al. 2017, Yemshanov et al. 2018, Brecka et al. 2020). A 

490 transition towards the harvesting of more broadleaf species or salvaged wood will require 

491 technical innovations and the upgrading of existing facilities to efficiently handle greater 

492 volumes of lower-quality wood. Climate-induced decreases in quality and quantity of 

493 wood supply, particularly from coniferous stands, are likely to influence forest product 

494 market prices and consumer preferences, which in turn may impact both the economic 

495 welfare of consumers and producers (McCarl et al. 2000, Albrecht et al. 2010, Brecka et 

496 al. 2018). Recent sharp increases in sawn timber prices during the COVID-19 pandemic 

497 is a reminder that high demand can induce volatility on the markets. 
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498 3.2. Impacts on carbon sequestration and storage in forests and wood products

499 Climate change may affect the overall carbon (C) balance of the forest sector in several 

500 ways. Climate change has the potential to alter spatiotemporal patterns in net ecosystem 

501 productivity (NEP). More frequent and severe wildfires will likely increase the amount of 

502 transient emissions due to combustion of organic matter and therefore influence total net 

503 ecosystem exchanges (NEE). Furthermore, climate change will induce changes in forest 

504 composition, which will in turn affect industrial supply chains, with a cascade of effects 

505 on the life cycle of harvested wood products (HWP) and substitution benefits. Finally – 

506 and this goes beyond the carbon cycle per se – direct and indirect climate-related drivers 

507 will impact forest covers in such ways that they may modify biophysical processes such 

508 as surface albedo and evapotranspiration, which  impact net radiative forcing. 

509 The current estimates show that Canada’s forest sector, ecosystems and harvested wood 

510 products combined, have switched from being a net sink of greenhouse gas up to 2001 

511 (except in years of extreme fire activity like 1995 and 1998), to a consistent net source in 

512 2002 and onward (NRCan 2021). Increasing amounts of areas affected by natural 

513 disturbances in the last decades (e.g., insect outbreaks, wildfires) have tremendous 

514 impacts on the overall carbon balance of the Canadian forest. Concurrently, forest 

515 management also contributed to reducing the ability of Canada’s forests to act as a carbon 

516 sink as net removals from the anthropogenic component of the managed forest lands 

517 declined from 200 megatons in 1990 to 130 megatons in 2020 (ECCC 2022). However, 

518 there is still a significant level of uncertainty around those estimates (Wulder et al. 2020, 

519 Deng et al. 2022). Yet, recent observed trends and prospective studies conducted as part 

520 of this RIA suggest that this ecosystem service might be at risk.
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521 Indeed, all carbon-focussed simulation experiments performed as part of this RIA 

522 (Landry et al. 2021, Figure 1, region d; Moreau et al. 2022, Figure 1, regions e1 and e2) 

523 suggest that radiative forcing itself is likely to substantially reduce the capacity of 

524 Quebec’s forests to act as carbon sinks (Figure 3v) as the mean NEP is projected to be 

525 considerably reduced under increased climate forcing. As a result, cumulative C balance 

526 (which is considering C substitution in wood products as well as carbon stocks within the 

527 ecosystem) would considerably decrease with increasing anthropogenic climate forcing 

528 in both boreal (Figure 1, region e1; Figure 4vi) and in temperate (Figure 1, region b2; 

529 Figure 4vii) forests. In fire-prone areas, more specifically in black spruce-dominated 

530 forests, the most direct consequence of increasing fire frequency and severity (Boulanger 

531 et al. 2014, Gauthier et al. 2015b, Boulanger et al. 2018) are going to be higher C 

532 emissions through the combustion of vegetation and soil organic matter. However, the 

533 consequences will be further reaching as post-fire regeneration failures will indirectly 

534 affect the net biome productivity of the most widespread forest type in Quebec and 

535 Canada (Walker et al. 2019), both by lowering mean stand productivity and by eroding 

536 the very amount of productive forests due to poor or failed regeneration as shown above 

537 (Cyr et al. 2021). Whether or not the net effect of that process on radiative forcing is a 

538 negative one is uncertain. Indeed, the transition from closed-canopy black spruce forests 

539 to open-crown lichen woodlands, as difficult to revert as it might be, is also associated 

540 with an increased surface albedo that triggers negative feedback (Bernier et al. 2011).

541 3.3. Climate change in forest landscapes will affect biodiversity and wildlife habitat

542 Projected changes in forest structure and composition could directly affect wildlife 

543 habitat, potentially inducing shifts, contractions or expansions of species distribution 
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544 ranges (Chen et al. 2011, D’Orangeville et al. 2022) and modifying biodiversity patterns 

545 (Parmesan 2007). Impacts are likely to strongly differ across taxa: species associated with 

546 landscape features that are projected to be vulnerable to climate change might be more at 

547 risk, whereas others may thrive and benefit from newly available resources and emerging 

548 features. Combined effects of harvesting and climate-induced changes in fire regime are 

549 projected to exacerbate the loss of old-growth stands within the boreal forest to 

550 proportions outside of their natural range of variability (Bergeron et al. 2017, Tremblay et 

551 al. 2018). Understanding climate-induced changes on wildlife habitat is of tremendous 

552 importance for conservation planning (Stralberg et al. 2019), especially for species at risk 

553 for which critical habitat could be strongly altered (Cadieux et al. 2019). For the purposes 

554 of the RIA, we assessed potential vulnerabilities to climate for boreal populations of 

555 woodland caribou (Rangifer tarandus caribou) and avian biodiversity. 

556 Boreal populations of woodland caribou (hereafter boreal caribou), a cultural keystone 

557 species for many Indigenous communities (Herrmann et al. 2014) as well as an umbrella 

558 species for old-growth forest specialists (Bichet et al. 2016), is designated as Threatened 

559 under the Canadian Species at Risk Act since 2002 (Species at Risk Act; S.C. 2002, 

560 c.29), and as Vulnerable under Quebec’s Loi sur les espèces menacées ou vulnérables 

561 since 2005 (RLRQ c E-12.01 r2). Landscape-level planning of resource extraction 

562 activities (e.g., Rudolph et al. 2017), local habitat restoration of disturbed areas (e.g., 

563 Lacerte et al. 2021, 2022) and various population management measures (e.g., predator 

564 control, Hervieux et al. 2014; maternity penning, Lamb et al. 2022) were identified 

565 among the essential tools for the successful recovery of the species (Johnson et al. 2019). 

566 In Quebec, the southern limit of boreal caribou’s distribution has gradually retreated 
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567 northward in the last century due to increased anthropogenic pressures, with southern 

568 remnant populations currently hovering at the brink of extinction (D’Orangeville et al. 

569 2022; Morineau et al. in prep). Climate change will likely pose an additional threat to the 

570 long-term persistence of boreal caribou throughout Canada (e.g., Murray et al. 2015; 

571 Barber et al. 2018; Neilson et al. 2022) and Québec (Leblond et al. 2022; St-Laurent et al. 

572 2022).

573 By combining previously modeled forest landscapes in the commercial forest of Quebec 

574 (Boulanger and Pascual Puigdevall 2021) with a habitat suitability model for boreal 

575 caribou (Leblond et al. 2014), we projected boreal caribou habitat suitability across the 

576 RIA study area (Figure 1, region a) for the 2020-2100 period under various climate and 

577 harvesting scenarios. We found that climate change was predicted to decrease boreal 

578 caribou habitat suitability, especially under RCP 8.5 (Figure 4viii), mostly as a result of 

579 increased wildfires at the expense of old conifer stands preferred by caribou (Leblond et 

580 al. 2022). As a result, climate change led to a significant decrease in habitat suitability, 

581 but mostly after 2070. Such changes in habitat are likely to impact trophic interactions 

582 notably by increasing moose populations, which could in turn support greater predator 

583 numbers, thereby increasing predation risk for caribou (Seip 1991; Wittmer et al. 2007; 

584 Frenette et al. 2020). A similar conclusion was found by Labadie (2022) in their 

585 simulations of forest dynamics and movements of interacting large mammal species 

586 (Figure 1, region f). In this study, the increase in caribou mortalities was exacerbated by 

587 the cumulative effects of land-use over the short term and climate change impacts over 

588 the long-term, with higher impact from land-use (Labadie 2022; Figure 4ix). 

589 Intensification of fire activity with increased radiative forcing could endanger currently 
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590 stable caribou populations, notably those located in the central and northwestern parts of 

591 the study area. Other areas, notably in the northeast as well as at the extreme northwest, 

592 are predicted to remain highly suitable even under increased radiative forcing, and could 

593 serve as potential climate refugia (Stralberg et al. 2015) for the species. That being said, 

594 climate-induced northward shift of the closed boreal forest is highly uncertain in the next 

595 decades because of dispersal limitation of the tree species, natural disturbances and 

596 physical landscape barriers (Price et al. 2013, Pau 2023). The northern margin of high-

597 quality boreal caribou habitat is thus unlikely to progress poleward. Climate change 

598 should exacerbate, however, the ongoing northward contraction of caribou range due to 

599 anthropogenic disturbances (Morineau 2022). 

600 Although there is a large body of literature in North America about the effects of forest 

601 management on wildlife habitat and biodiversity (Drapeau et al. 2000, Venier and Pearce 

602 2004; Schieck and Song 2006), current knowledge about the impact of climate change on 

603 avian community dynamics is limited (but see Langham et al. 2015, Stralberg et al. 2015, 

604 Tremblay et al. 2018, Cadieux et al. 2020, Micheletti et al. 2021). Birds are a diverse 

605 taxonomic group occupying a large variety of niches in forest landscapes and, as such, 

606 could serve as a useful proxy to assess the vulnerability of biodiversity to climate change 

607 and forest management over the RIA’s study area. Therefore, we also projected changes 

608 in avian species abundance for the 2020-2100 period under various climate and 

609 management scenarios in two contrasting forest landscapes located within the boreal 

610 (Montmorency Forest, Figure 1, region e1) and temperate (Hereford Forest, Figure 1, 

611 region b2) forests.
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612 Under RCP 8.5, generalist avian species and those associated with young hardwood 

613 stands were projected to increase in abundance, particularly within the temperate study 

614 area (increases of 8% and 24%, respectively, Figure 4xi). Conversely, bird species 

615 associated with closed and mature softwood stands were projected to decrease in 

616 abundance by ~24%.  Within the boreal forest study area, the abundance of generalist 

617 avian species and those associated with closed deciduous stands were projected to 

618 increase by ~12% and 13%, respectively, under RCP 8.5 (Figure 4x). One species 

619 (Black-backed Woodpecker) was projected to decline by 39%, while other avian species 

620 groups remained relatively stable (Labadie et al. in prep.). Avian species were projected 

621 to be most impacted by climate change effects within the temperate forest study area 

622 (Labadie et al. in prep.). Our simulations highlighted that eight avian species were likely 

623 to be vulnerable to the effects of climate change in the temperate forest study area, with 

624 declines exceeding 25%; the steepest declines were observed for the Northern Parula 

625 (Setophaga americana [L.]; 46%), Blue-headed Vireo (Vireo solitarius [Wilson]; 40%), 

626 and Golden-crowned Kinglet (Regulus satrapa Licht.; 35%) (Labadie et al. , in prep). 

627 This study improves our understanding of how avian communities in the boreal and 

628 hemiboreal forests in eastern boreal region of North America are likely to be differently 

629 vulnerable by changes in forest composition resulting from climate change. 

630 3.4. Climate- and forestry-induced changes could severely affect First Nations forest 

631 values

632 Indigenous livelihoods, cultures, and identities are strongly tied to the land (Saint-Arnaud 

633 et al. 2009, Bélisle et al. 2021). Climate change, forestry practices, and other industrial 

634 disturbances have been driving major changes in boreal landscapes (Gauthier et al. 
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635 2015a, Belisle et al. in press) with the potential for significant consequences for the well-

636 being of Indigenous peoples (Parlee et al. 2012, Fuentes et al. 2020). For instance, Erni et 

637 al. (2021) showed that Indigenous communities are and would be most exposed in the 

638 future to climate-induced increases in wildfires. Changes in forest landscapes and wildlife 

639 habitats, notably those identified in the previous section, could strongly threaten cultural 

640 and subsistence practices that are important for Indigenous people, including hunting, 

641 trapping and knowledge transmission (Bélisle et al. 2021). Examples include climate-

642 induced changes in specific cover types of significant economic, cultural and spiritual 

643 values for Indigenous communities (e.g., pine stands, Uprety et al. 2013, 2017) as well as 

644 damages to caribou habitat (see section 3.3), which is a cultural keystone species for 

645 several First Nations (Herrmann et al. 2014). In this context, developing partnerships 

646 between research institutions and Indigenous communities allows the assessment of 

647 impacts of environmental changes on forests from a perspective that is consistent with 

648 both Indigenous knowledge and western science (Barber and Jackson 2015, Bélisle et al. 

649 2022). 

650 With the collaboration of Université du Québec en Abitibi-Témiscamingue, University of 

651 Saskatchewan, Abitibiwinni First Nation Council, Ouje-Bougoumou Cree Nation, and 

652 Natural Resources Canada, a study was conducted as part of this RIA to assess how 

653 climate change and timber harvesting could affect Indigenous landscape values (e.g., 

654 moose abundance, fish quality, land access) within the Oujé-Bougoumou and Pikogan 

655 hunting grounds (Bélisle 2022, Figure 1, region g). As shown above, the area where these 

656 First Nations are located will be exposed to rapid and marked changes in forest landscape 

657 structure and composition, with mature and coniferous stands progressively transitioning 
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658 to young stands with increasing proportions of hardwoods, mostly as a result of increased 

659 fire activity. By combining insights from local land-use experts as well as forest 

660 landscape simulations, we found that climate change will have a strong influence on 

661 values associated with mature coniferous forests, such as some species important to 

662 Indigenous trappers, e.g. American marten (Martes americana) (Figures 4xii and 4xiii). 

663 A loss in marten abundance affects many aspects of Indigenous livelihood. A loss in 

664 marten abundance affects many aspects of Indigenous livelihood since marten trapping is 

665 important for both Indigenous cultures and economies. Moreover, trapping requires 

666 traditional skills and knowledge that is passed down from one generation to the next and 

667 is a key cultural practice (Ohmagari and Berkes 1997, Radu et al. 2014).

668
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669 Figure 4. Impacts of climate scenarios (baseline, RCP 4.5 and RCP 8.5) on various 
670 ecosystem services as assessed in the RIA. All results considered the cumulative effects 
671 of climate change and business-as-usual forest management strategy. Analyses in i and iii 
672 were not conducted under RCP 4.5. Results in vi and vii are plotted relative to a reference 
673 scenario, i.e., under baseline climate conditions without forest management 
674 (“conservation”). For x and xi, bird abundance is expressed for species either associated 
675 with closed mature softwood forests and generalists. HSI: Habitat suitability index, 
676 unitless; P(yes): Probability to fulfill family's needs (with no need to adapt). Readers can 
677 refer to figure 1 for study locations. i) and iii) from Cyr et al. (2021); ii) and iv) from 
678 Forestier en Chef (2021a); v) from Landry et al. (2021); vi) and vii) from Moreau et al. 
679 (2021); viii) from Leblond et al. (2022); ix) from Labadie (2022); x) and xi) from 
680 Labadie et al. in prep.; xii) and xiii) from Belisle (2022).
681

682

683 4. The necessity of adapting forest management

684 Collectively, the results presented herein suggest that virtually every sphere of forest 

685 management and planning we studied will likely face several challenges in the context of 

686 climate change. Moreover, forest operations, the development and implementation of 

687 forest management strategies, the management of natural disturbances, and biodiversity 

688 conservation are likely to all be impacted by climate change. Forest managers must 

689 therefore take this new reality into account and prepare today’s forests for tomorrow’s 

690 climate (Gustafson et al. 2020) by adapting their practices and their visions of future 

691 forests. Forest management practices have been developed based on the premise of a 

692 stable climate. Climate change thus challenges the very essence of many forestry 

693 concepts and practices (Périé and De Blois, 2016). Achieving sustainable forest 

694 management objectives will be challenging, as forest managers will have to deal with 

695 increasing uncertainty (Ogden and Innes 2009). In this context, it seems clear that status 

696 quo is no longer an option (Drever et al. 2021). 
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697 The ecosystem-based forest management (EBFM) strategy is used to manage forests on 

698 public lands in Quebec, which represents nearly 90% of commercial forest landscapes 

699 (RLRQ, chapter A-18.1). This strategy aims at maintaining a disturbance regime close to 

700 the historical range of natural variability, and was initially proposed to reduce differences 

701 with presettlement forests (Landres et al. 1999) and help promote healthy ecosystems and 

702 conserve biodiversity while maintaining sustainable timber supply. Considering these 

703 characteristics, EBFM was therefore deemed by many to be suitable to mitigate climate 

704 change impacts on forests by enhancing their resilience (Comité d’experts sur 

705 l’aménagement écosystémique des forêts et les changements climatiques 2017). Indeed, 

706 initial analyses conducted within the RIA indicated that EBFM would be less likely than 

707 intensive strategies to increase the gap between current forest composition and the one 

708 prevailing during the pre-industrial era (Boulanger et al. 2019). 

709 Yet, these current strategies are far from being a panacea in the context of climate change 

710 (Dhital et al. 2015, Landry et al. 2021), as they are still expected to result, for example, in 

711 carbon loss in the boreal forest, a hastening of climate-induced forest transition, a 

712 decrease in biodiversity and wildlife habitat, and a long-term reduction in harvested 

713 volumes (Figure 4). Adaptation beyond the current implementation of EBFM is therefore 

714 key to mitigating the impacts of climate change on several forest ecosystem services 

715 (Bergeron et al. 2010, Gauthier et al. 2014). Several options for the forest sector can be 

716 envisioned, from favoring persistence (resistance, resilience) to managing change 

717 (transition; Gauthier et al. 2014, Nagel et al. 2017, Peterson St-Laurent et al. 2021). Some 

718 of the adaptive solutions may directly come from current management practices and 

Page 33 of 71 Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

17
4.

11
2.

35
.1

34
 o

n 
03

/2
8/

23
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



719 could be used as levers of action. Other solutions may require new developments in order 

720 to meet specific objectives.  

721 In the following sections, we summarize analyses that were conducted as part of 

722 Quebec’s RIA to assess the effects of various adaptation solutions to some of the 

723 vulnerabilities that were identified. These strategies were various between study areas but 

724 could be summarized according to a gradient of management intensity as follow: i) 

725 “Conservation” (e.g., no harvest), ii) “Reduction” (e.g., create conservation areas, 

726 lengthening harvest rotation, reduce harvesting rates, increase partial harvesting); iii) 

727 “business-as-usual” (e.g., current forest management strategies), iv) “Intensification” 

728 (e.g., increased plantation efforts, higher harvesting rates) , and v) “Mixed” (e.g., 

729 strategies that mix both “reduction” and “intensification” strategies). These solutions do 

730 not represent a comprehensive assessment of all potential strategies that could be tested 

731 and implemented to adapt forest management to specific regional vulnerabilities, but are 

732 rather a representative subset of strategies that could be implemented given the 

733 vulnerabilities identified above.

734 4.1 Reduce the negative impacts of regeneration failures in the boreal forest

735 As shown earlier, climate-induced increases in fire activity, notably in the central and 

736 northwestern parts of Quebec’s commercial forest, could trigger extensive regeneration 

737 failures and productivity loss (Figures 4i and 4iii), requiring prompt and extensive 

738 adaptive measures to maintain forest productivity (Cyr et al. 2021, Forestier en Chef 

739 2021). Based on these impacts, we assessed the efficiency of several strategies, from total 

740 conservation, business-as-usual harvest as well as two main mitigation strategies against 
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741 regeneration failures (variable retention and planting), to mitigate climate-induced loss in 

742 forest productivity. Variable retention harvesting is a proactive treatment and is used as a 

743 means to improve post-fire regeneration success whereas planting is a reactive strategy, 

744 in which reforestation is used to restore productivity in burned areas affected by 

745 regeneration failure. Several reforestation scenarios were considered but for the sake of 

746 the analysis here, we focus on i) a scenario involving variable retention and the plantation 

747 of jack pine using the existing road network (“Mixed”) and ii) another scenario where 

748 business-as-usual harvesting rates are used and in which roads are extensively built to 

749 restore post-disturbance stands with jack pine plantation (“Intensification”). Planting jack 

750 pine is assessed in order to take advantage of its greater resilience to fire (Baltzer et al. 

751 2021), largely based on its earlier age at reproductive maturity relative to that of black 

752 spruce (Viglas et al. 2013, Briand et al. 2015). We quantified their respective capacity to 

753 maintain landscape productivity and post-fire resilience, as well as associated financial 

754 returns under current and projected (RCP 8.5) fire regimes. While post-fire reforestation 

755 with jack pine was shown to be the most effective strategy in maintaining potential 

756 productivity (Figure 5i, “Mixed”), associated costs quickly became prohibitive regardless 

757 of planted species when applied over extensive areas, particularly under future fire 

758 regimes (Figure 5ii, “Intensification”). The proactive strategy employing variable 

759 retention harvesting, combined with replanting of fire-adapted jack pine in easily 

760 accessible areas (in close proximity to the existing road network), appeared as a 

761 promising strategy to maintain productivity at lower costs (Figure 5i and 5ii, “Mixed”). 

762 These results also highlighted the important role that forestry road networks play in our 

763 ability to effectively respond to regeneration failure events, since plantation 
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764 establishment and the application of other silvicultural strategies are limited by 

765 accessibility and operational constraints. 

766 This benefit will need to be weighed against the negative impacts of road networks on 

767 other valued components of the ecosystem, most notably caribou distribution and survival 

768 (e.g., Leblond et al. 2013). Indeed, roads are known to cause habitat fragmentation and 

769 favor the movements of wolves (Dickie et al. 2017), increase the encounter rates between 

770 predators and prey (Whittington et al. 2011), and intensify predation pressure on caribou 

771 (Mumma et al. 2017). Consequently, roads can jeopardize the sustainability of caribou 

772 populations via functional (or indirect) habitat loss (Polfus et al. 2011). In this context, 

773 forest zoning aiming at intensifying silviculture together while concurrently increasing 

774 habitat protection and restoration conservation in other areas, might constitute a valuable 

775 compromise (Royer-Tardif et al. 2021).

776 Promoting the establishment of broadleaf species could also help mitigate fire-induced 

777 losses in productive forests. An increased broadleaf component in the landscape would 

778 decrease its flammability, partially mitigating climate-induced increases in severe fire-

779 weather conditions through negative fire-vegetation feedbacks (Krawchuk and Cumming 

780 2011, Girardin et al. 2013, Boulanger et al. 2018, Chaste et al. 2019). Simulations 

781 involving different levels of post-disturbance establishment of either broadleaf or conifer 

782 species were conducted in central Québec (Figure 1, region c) (Forestier en Chef 2021a). 

783 These simulations considered both climate-induced changes in productivity and fire 

784 activity. Under RCP 8.5, doubling the post-disturbance area planted with conifer and 

785 broadleaf species as well as the creation of intensive management zones on 25% of the 

786 managed landbase (“Intensification”) was shown to almost double harvested volumes as 
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787 compared to a business-as-usual approach under the same climate forcing scenario 

788 (Figure 5iii). Despite the implementation of this adaptation measure, a 31% decrease in 

789 harvested volumes relative to current levels (Figure 5iii) would still be required to 

790 stabilize harvest levels and avoid recurring timber shortages (Forestier en chef  2021a). 

791 From both of these RIA studies (Cyr et al. 2021, Forestier en chef 2021a), it appears that 

792 post-disturbance plantation efforts in projected fire-prone landscapes may not entirely 

793 compensate for the projected climate-induced erosion of forest productivity and may 

794 prove to be prohibitively costly. In this context, integrating fire a priori and hence 

795 reducing annual allowable cut accordingly in strategic forest management planning may 

796 be beneficial. Several studies have already shown that reducing harvest levels a priori or 

797 considering a buffer stock would help stabilize long-term timber supply and avoid 

798 shortages in fire-prone regions (Boychuk and Martell 1996, Raulier et al. 2014, Leduc et 

799 al. 2015, Forestier en chef 2022), including under climate change (Daniel et al. 2017, 

800 Forestier en chef 2021a). Currently, the Bureau du Forestier en Chef (BFEC) applies a 

801 20% buffer on annual allowable cuts for specific forest management units located in 

802 northwestern Québec as a result of high historical fire activity within these areas 

803 (Forestier en Chef 2021b). Our results suggest that the application of allowable cut 

804 buffers, in conjunction with measures enhancing post-disturbance productivity, may be 

805 required elsewhere in the boreal to help stabilize timber supply over time. 

806 4.2 Maintain the potential for carbon sequestration and storage in forests and 

807 products under climate change
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808 People and organizations who advocate in favor of conservation will often stress the 

809 importance of accumulating the largest carbon stocks possible at the ecosystem level, 

810 while on the opposite side of the spectrum, those biased towards the industry 

811 systematically plead in favor of increasing average net growth through more intensive 

812 silviculture so that more carbon can be transferred to long-lived wood products. Our RIA 

813 provides evidence that there is no simple answer to that debate and that the most 

814 beneficial strategy, from a climate change mitigation perspective, may vary from one 

815 forest landscape to another (Figure 5iv and 5v). For instance, conservation strategies that 

816 maintain or increase the abundance of mature and old-growth forests might be more at 

817 risk of carbon inversion in landscapes that are more prone to natural disturbances 

818 (Sharma et al. 2013). Moreover, there are still uncertainties regarding the ability of these 

819 stands to act as carbon sinks in the long term (Gao et al. 2018, Smyth et al. 2020, 

820 Gundersen et al. 2021) as conservation after age 70 does not result in significant carbon 

821 uptake or emission in Quebec’s boreal forests (Harel et al. 2021). That being said, we 

822 advocate that these uncertainties should not overshadow the role of old-growth forests to 

823 act as carbon sinks (Harel et al. 2021). 

824 On the other hand, while increasing harvesting may reduce the risk of ecosystem-level 

825 carbon pools being release in the atmosphere by reducing exposure time to the risk of 

826 natural disturbances, it also tends to shift forested landscapes to a younger state, which 

827 may in turn reduce its resilience and adaptive capacity in face of more frequent fires 

828 (Splawinski et al. 2019b; Cyr et al. 2021). However, silviculture can be used to increase 

829 ecosystem carbon sinks in some landscapes (Figure 5v), but emissions associated with 

830 the procurement and manufacturing of wood products and their decay during their 
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831 lifetime must also be taken into a consideration as they heavily influence the net carbon 

832 balance (Moreau et al. 2022) and must be taken into consideration. Increasing the 

833 material use of wood as long-lived, durable products and encouraging their recycling and 

834 cascading at their end-of-life, both for material and energy uses can reduce annual 

835 product emissions while increasing the substitution effect, with a strong and direct impact 

836 on the forestry sector's carbon budget (Smyth et al.  2014, Chen et al. 2018, Dugan et al. 

837 2018). Then again, some challenges are to be expected. For instance, our RIA suggests 

838 that climate change will be unfavorable to some species that are currently highly valued 

839 by the timber industry, such as Picea spp. (Figure 3, see also Brecka et al. 2018), and that 

840 it will be beneficial to other ones that are currently mostly dedicated to pulp and paper 

841 (e.g., deciduous species, Figure 3), i.e. products with a short lifespan and virtually no 

842 substitution effect on markets. It will be crucial, therefore, not only to focus on the 

843 supply-side actions (i.e., increasing carbon pools at the ecosystem level) but also on the 

844 demand-side (i.e., harvested wood products) to make sure that climate change mitigation 

845 potential is maximized.

846 Even if they achieve to maximize pools of non-atmospheric carbon, either within the 

847 ecosystem or in long-lived wood products, both types of strategies are usually associated 

848 with very different sets of co-benefits, which may also not be distributed in time the same 

849 way. Consequently, blanket statements about whether conservation or intensification is 

850 best should be avoided. There is still a lot of uncertainty surrounding our results and 

851 about the best course of action from a climate change mitigation perspective. Multiple 

852 factors such as initial conditions of forest landscape, current and future stand 

853 productivity, disturbance rates, adaptability of industrial supply chains, only to name a 
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854 few, are at play. Our capacity to represent those factors within an integrative modeling 

855 framework is also still very limited, especially considering how much they vary in space 

856 and time and how poorly those variations are documented. 

857 4.3 Using adaptation strategies to help biodiversity conservation under climate 

858 change

859 We previously illustrated that current harvest strategies had the potential to strongly 

860 impact avian diversity and caribou habitats as proxies of representative boreal wildlife 

861 diversity. Natural resource managers and conservation authorities are thus faced with the 

862 difficult task of defining and planning long-term habitat conservation strategies under a 

863 changing climate, notably for species at risk. Developing adaptive measures represents a 

864 valuable yet challenging goal in this context. Indeed, forest management and habitat 

865 recovery plans have great potential to influence how future forest landscapes and 

866 biodiversity will respond to climate change (Ravenscroft et al. 2010, Steenberg et al. 

867 2013) and limit climate change impacts on recovery efforts for threatened species 

868 (Cadieux et al. 2019, St-Laurent et al. 2022). 

869 As suggested from previous analyses, one of the biggest challenges to biodiversity 

870 conservation under a changing climate in eastern Canada will be to develop strategies to 

871 cope with increasing disturbance rates accruing from both harvesting and projected 

872 climate-induced increases in natural disturbances (St-Laurent et al. 2022). Of particular 

873 importance, increased disturbance rates could hasten the conversion of forest cover types 

874 and the strong decline in old-growth age classes (Bergeron et al. 2017), with detrimental 

875 impacts on caribou and other specialist species associated with these forest types 
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876 (Tremblay et al. 2018, Barber et al. 2018, Cadieux et al. 2020, Nenzen et al. 2020, 

877 Micheletti et al. 2021). Our analyses showed that ceasing harvest (Figure 5vi, 

878 “Conservation”) could help mitigate alterations in boreal caribou habitat for the entire 

879 RIA study area (Leblond et al. 2022). Halting harvest activities in areas where habitat 

880 suitability is currently high could help maintain high quality habitat even under the most 

881 intense climate change scenarios as opposed to business-as-usual harvest (Figure 5vi, 

882 “BaU”). Reducing harvest levels was also shown to mitigate climate-induced decreases in 

883 the probability of occurrence for caribou in central Quebec (St-Laurent et al. 2022). 

884 Likewise, Labadie (2022) found that a management scenario aiming at creating exclusive 

885 zones for conservation while other zones would experience alternative management 

886 strategies to increase the proportion of old-growth stands would help decrease caribou 

887 predation and mortality regardless of radiative forcing. 

888 These studies demonstrated that forest harvesting is a key driving force in a caribou-

889 moose-wolf assemblage. Substantially reducing harvest rates or protecting specific areas 

890 mitigated the loss of old conifer and mixed forests favored by caribou, irrespective of 

891 climate-induced increases in fire activity. Conversely, high harvest levels coupled with 

892 increased fire activity would increase young, nutrient-rich stands for other ungulates 

893 (Potvin et al. 2005), exacerbating the vegetation-driven apparent competition dynamic 

894 between moose and caribou (Seip 1991; Frenette et al. 2020, Wittmer et al. 2007, Labadie 

895 2022). 

896 Lower harvesting levels (obtained either by increasing conservation area, reducing 

897 harvest levels, increasing partial harvesting, or implementing longer harvest rotation 

898 periods) would not only benefit caribou, but also avian abundance. Indeed, stopping or 
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899 lowering harvest levels would partially mitigate the climate-induced loss in closed and 

900 mature mixed and coniferous forests, which would benefit overall avian abundance in 

901 both boreal and temperate forest regions (Figures 5vii and 5viii, “Conservation” and 

902 “Reduction”). Some species (e.g., Magnolia Warbler [Setophaga magnolia], Northern 

903 Parula [Setophaga americana], or Golden-crowned Kinglet [Regulus satrapa]), however, 

904 would still be highly vulnerable to climate change as they showed strong declines under 

905 all management scenarios simulated (Labadie et al., in prep.). Similarly, in the boreal 

906 forest study area, stopping or lowering harvest levels would benefit species associated 

907 with mature mixedwood and coniferous forest stands (e.g., the Brown Creeper Certhia 

908 americana and the Black-backed Woodpecker).

909 Hence, results obtained within Quebec's RIA illustrate that modulating harvest levels is 

910 effective when developing biodiversity conservation strategies under climate change. 

911 This is especially important as harvest was shown to be the most important agent of 

912 change explaining future caribou habitat and boreal bird abundance over the short- to 

913 medium-term, regardless of projected anthropogenic radiative forcing scenarios (St-

914 Laurent et al. 2022, Leblond et al. 2022, Labadie et al., in prep.). Lowering harvest levels 

915 also constitutes one of the few management levers on which we have control in this 

916 context (in stark contrast with global GHG emissions). Resulting increased habitat 

917 protection in this context would benefit a plethora of species, notably those associated 

918 with old-growth coniferous forests in the boreal forest (Bichet et al. 2016, Drever et al. 

919 2019, Labadie 2022).

920 4.4 Adapting forest management to sustain Indigenous values 
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921 The collaborative research work with the Abitibiwinni and Ouje-Bougoumou First 

922 Nations (Figure 1f) highlighted the benefits that could be achieved from lowering harvest 

923 rates. Major changes in forest structure and composition are expected in the coming 

924 decades and developing adaptation and mitigation strategies could limit the effects of 

925 climate change on Indigenous livelihoods and cultures. Indeed, we showed that 

926 increasing harvest levels could accelerate the climate-induced loss in good trapping 

927 habitats for marten (Figures 5ix and 5x, “Intensification”) in the northwestern part of our 

928 study area whereas opposite effects would be reached under strict conservation (Figures 

929 5ix and 5x, “Conservation”). The capacity of Indigenous communities to adapt to 

930 changing environmental conditions has been demonstrated numerous times in the past. 

931 However, there are limits on adaptive capacity, and the factors that maintain it still need 

932 to be investigated and documented. Strategies could include the valorisation of traditional 

933 knowledge associated with the forest types that will be more present in the future. 

934 Strategies to limit fire hazard on cultural keystone locations, species, and infrastructure, 

935 should also be considered. Moreover, diversifying landscape values that guide forest 

936 management to take into account Indigenous values is advised. More generally, a step 

937 towards collaboration with Indigenous peoples in land management to face the challenges 

938 of environmental change needs to happen. Collaborations between First Nation and 

939 provincial/territorial departments aiming at adapting forest management to community’s 

940 values already exist in Canada (e.g., Conseil Cris-Québec sur la foresterie in Quebec 

941 [http://www.ccqf-cqfb.ca/fr/accueil/], Gwich’in Forest management plan in the 

942 Northwest Territories [https://www.gwichinplanning.nt.ca/landUsePlan.html]), and can 

943 be cited as successful examples that need to be repeated. 
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944

945 Figure 5. Impacts of forest management adaptation strategies on various ecosystem 
946 services as assessed in the RIA under baseline, RCP 4.5 and RCP 8.5 climates. The 
947 simulated forest management scenarios were classified as “Conservation” (e.g., stopping 
948 harvest), “Reduction” (e.g., create conservation areas, lengthening harvest rotation, 
949 reduce harvesting rates, increase partial harvesting); “business-as-usual” (e.g., current 
950 forest management strategies), “Intensification” (e.g., increased plantation efforts, higher 
951 harvesting rates), and “Mixed” (e.g., strategies that mix both “Reduction” and 
952 “Intensification” strategies). Not all studies included all scenarios. Results are plotted 
953 relative to a reference scenario, i.e., under baseline climate conditions and business-as-
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954 usual forest management. P(yes): Probability to fulfill a family's needs (with no need to 
955 adapt).  Readers can refer to figure 1 for study locations. i) and ii) from Cyr et al. (2021); 
956 iii) from FEC (2021); iv) and v) from Moreau et al. (2021); vi) from Leblond et al. 
957 (2022); vii) and viii) from Labadie et al., in prep.; ix) and x) from Belisle (2022).

958

959 5.  Concluding remarks 

960 Regional solutions to climate change impacts on forests require partnership and 

961 collaboration between experts working in various fields. The RIA process highlighted the 

962 necessity of integrating the expertise and perspectives of diverse knowledge-holders, as 

963 climate change impacts were revealed to also be diverse. Indeed, although we did not 

964 intend to develop standard practices for regional assessments, our framework could be 

965 well adapted across northern forest ecosystems. Regional integrated assessments such as 

966 this one are useful to better support decision-making at the regional level. We learned 

967 that a bottom-up approach, where problems are identified by local and regional partners 

968 including Indigenous peoples, was key to identify vulnerabilities and test adaptation 

969 measures. We believe that such collaborations and commitments should be set up early in 

970 the process and maintained over time. In our example, early and repeated consultations 

971 with regional partners and stakeholders played an integral role in the success of the RIA. 

972 Bilateral discussions greatly helped to work in a complementary fashion, for instance 

973 completing projects that were already undertaken by the province to identify climate 

974 vulnerability or test for adaptive strategies. Decade-long collaborations between research 

975 scientists and analysts belonging to different organizations was an additional asset and 

976 this project likely contributed to tightening these connections. Communicating RIA 

977 results to stakeholders was of first importance. However, sanitary restrictions caused by 
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978 the COVID-19 pandemic prevented in-person workshops from being held. Instead, the 

979 work was presented in the form of webinars (in French) that took place between January 

980 and March 2021 (available online at 

981 https://www.youtube.com/playlist?list=PL9Sro7G6My3oM1QlW37fokxQLtstAW9hY). 

982 Between 80 and 150 people, from a diverse audience composed of local and regional 

983 stakeholders, academia, Indigenous organizations, and provincial and federal agencies, 

984 attended each of the seven webinars. 

985 Our assessment helped confirm that Quebec’s forests and forest sector will be highly 

986 impacted by climate change in the following decades. Strong agreement between models 

987 as well as the breadth of predicted impacts make a strong case for swift and meaningful 

988 action. Climate-induced impacts are already perceptible, and even stronger alterations 

989 could occur within the next few decades, even under moderate climate forcing. In this 

990 context, there is an urgent need to critically review management objectives and strategies 

991 to mitigate risk. 

992 There is still uncertainty in how today’s forest management strategies and proposed 

993 adaptation approaches in such an ecosystem with long-lived organisms will be able to 

994 cope with rapid climate change. As a consequence, our analyses suggest that we should 

995 aim to strengthen our capacity to detect changes, and take advantage of current 

996 monitoring systems, notably regarding tree regeneration, growth, mortality, and pests. 

997 From this perspective, Quebec is rather well positioned considering its extensive 

998 permanent and temporary sample plot network as well as the Canadian National Forest 

999 Inventory monitoring system (https://nfi.nfis.org/en/). Regional concertation tables (such 

1000 as the Tables locales de gestion intégrée des ressources et du territoire) could be 
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1001 involved in the periodic review of successful and ineffective climate adaptation strategies 

1002 based on its effectiveness in a regional context. Concurrently, continuous scientific, 

1003 technical and financial support of large-scale climate adaptation initiatives (such as the 

1004 Adaptive silviculture for Climate Change network in North America, Nagel et al. 2017), 

1005 Research and Teaching Forests or Model Forests (e.g., 

1006 https://www.modelforest.net/index_lang_en.html) will also be paramount to develop and 

1007 maintain our ability to predict and prevent bad surprises. The development of such 

1008 adaptive strategies will be integral in enhancing the resilience of forest ecosystems and 

1009 the forestry sector to climate change.

1010 We showed that business-as-usual strategies are likely to result in a deterioration of 

1011 several ecosystems goods and services. Whether conservation, reduction, intensification 

1012 or mixed strategies should be applied highly depends on the vulnerability identified, as 

1013 well as the regional context. In this respect, it is difficult to determine a “one-size-fits-all” 

1014 strategy. Wall-to-wall strategies are equally likely to fail as seen, for instance, from 

1015 different regional impacts of harvest levels on carbon sequestration. Regional and infra-

1016 regional analyses and solutions are therefore imperative to fulfill stakeholder objectives. 

1017 Our analyses suggest that reducing harvesting could benefit several ecosystem services 

1018 by mitigating climate-induced changes on caribou habitat, avian biodiversity, carbon 

1019 storage (in the boreal forest), and Indigenous subsistence and cultural practices. In 

1020 addition, we illustrated that, under the range of adaptive strategies tested, reducing 

1021 harvest levels would help to stabilize timber harvest rates and reduce post-fire 

1022 regeneration failures within current or future fire-prone regions. As demonstrated from 

1023 several of our analyses, maintaining current harvest rates while applying status quo 
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1024 management strategies could lead to a supply of timber that is unstable and, by extension, 

1025 have important economic impacts. Thus, our results suggest that a strategy aiming at 

1026 reducing harvest levels may benefit both the health of forest ecosystems as well as the 

1027 sustainability of the forest sector and forest dependent communities. 

1028 Although “Reduction” strategies did perform well under climate change conditions, we 

1029 also showed that “Mixed” and “Intensification” strategies could also benefit certain 

1030 values. Furthermore, it is important to note that we did not model all possible adaptation 

1031 measures in response to the vulnerabilities identified. Other strategies seeking to balance 

1032 timber supply and other forest values under climate change should be explored, such as 

1033 the triad concept (Royer-Tardif et al. 2021). Strategies aiming to improve functional 

1034 redundancy in complex ecosystems also show promise (Messier et al. 2019, Mina et al. 

1035 2022). Transition strategies based on assisted migration of climate-adapted species or 

1036 populations have also demonstrated the potential to provide benefits under climate 

1037 change (e.g., Pedlar et al. 2012). We advocate that testing a diversity of approaches will 

1038 be paramount to better document trade-offs under uncertain future conditions. 

1039 Furthermore, documenting the overall risks to important aspects of forest ecosystems and 

1040 the forestry sector will be necessary in this endeavor (Gauthier et al. 2014). For example, 

1041 although developing the road network helps lower climate-induced regeneration failures 

1042 by providing easier access for post-disturbance plantation, its negative impacts on other 

1043 valued components of the ecosystem, most notably caribou (e.g., Leblond et al. 2013, 

1044 2014, 2022), have to be considered. The development of solutions that are sustainable, 

1045 socially acceptable, and respectful of regulations and agreements in place will require 

1046 compromise. 
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1047 Although our assessment aimed at identifying major vulnerabilities to the forests of 

1048 Quebec as well as to identify proper adaptation solutions, some aspects, though 

1049 potentially important, could have not been covered by the work synthesized in this 

1050 assessment. For instance, we did not explicitly explore the impact of climate change on 

1051 soil properties and functions, including soil biodiversity. Climate change will alter plant-

1052 soil feedbacks, influencing plant performance and diversity that will ultimately drive 

1053 ecosystem processes (Pugnaire et al. 2019). In the boreal forest, interactions between 

1054 changes in climate conditions as well as in the disturbance regime could influence 

1055 nutrient foliar content and insect outbreak (De Grandpré et al. 2022). Soil biota, which is 

1056 known to play key roles in ecological responses of forest ecosystems to climate change 

1057 (Bardgett and van der Putten 2014), could also be altered by climate change-induced soil 

1058 warming, changes in precipitation and increased CO2 concentration (Blankanship et al. 

1059 2011). Further work in this field is warranted.  

1060  Our assessment encourages us to think about forest management and adaptation to 

1061 climate change in terms of a plurality of values, notably by taking into account the 

1062 knowledge and perspectives of Indigenous peoples. Varied silvicultural toolboxes to 

1063 manage climate risk to forests will be necessary, as will be the need to raise awareness 

1064 and mobilize regional stakeholders. Furthermore, as knowledge about climate change 

1065 impacts and adaptation strategies evolves, and as climate change severity unfolds, forest 

1066 management strategies will have to be highly adaptive to better cope with current and 

1067 emergent risks (Gauthier et al. 2014, Achim et al. 2021). Some of the solutions will likely 

1068 necessitate extensive actions and require increased resources that will have to be 

1069 considered upfront. No-regret actions will have to be prioritized. In any case, dedicated 

Page 49 of 71 Canadian Journal of Forest Research (Author?s Accepted Manuscript)

© The Author(s) or their Institution(s)

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

17
4.

11
2.

35
.1

34
 o

n 
03

/2
8/

23
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 T
hi

s 
Ju

st
-I

N
 m

an
us

cr
ip

t i
s 

th
e 

ac
ce

pt
ed

 m
an

us
cr

ip
t p

ri
or

 to
 c

op
y 

ed
iti

ng
 a

nd
 p

ag
e 

co
m

po
si

tio
n.

 I
t m

ay
 d

if
fe

r 
fr

om
 th

e 
fi

na
l o

ff
ic

ia
l v

er
si

on
 o

f 
re

co
rd

. 



1070 adaptive resources and approaches will be necessary to prevent potentially significant and 

1071 severe alterations of forest ecosystem processes and forestry sector activities in Quebec in 

1072 the coming decades. 
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Figure 1. Location of each individual projects included in the RIA. Region a: De Grandpré et al. (2019), 
Boulanger and Pascual Puigdevall (2021), Boulanger et al. (2021), Leblond et al. (2022). Also corresponds 
to the Quebec’s managed forest as well as the intensive protection zone for fire suppression; Region b: Cyr 

et al. (2021); Region c: FEC (2021); Region d: Landry et al. (2021); Regions e1 and e2: Moreau et al. 
(2022), Labadie et al. (in prep.); Region f: Labadie (2022).  Regions g1 (Abitibiwinni) and g2 (Ouje-

Bougoumou): Bélisle (2022). Forest region (Boreal, Mixed, Temperate) shapefile available from 
https://www.foretouverte.gouv.qc.ca/ . 
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Figure 2. Impacts of climate scenarios (baseline, RCP 4.5 and RCP 8.5) on productivity (potential maximum 
aboveground biomass; i), on annual area burned (ii) and on volumes at risk to spruce budworm outbreaks 
(iii). Cumulative impacts on aboveground biomass of deciduous and conifer species are also shown in iv. 
Results are shown for either the boreal (left column) or the temperate and mixed forest regions (right 

column). Note that in iii, volume at risk to SBW is virtually nil under RCP 8.5. i from Boulanger and Pascual 
Puigdevall (2021); ii from a modified version of Boulanger et al. (2014) models; iii from Boucher et al. 

(2018); iv from Boulanger and Pascual Puigdevall (2021). Readers can refer to figure 1 for forest regions. 
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Figure 3. Model ensemble agreement classes (%) per species, and forest region (Temperate + Mixed and 
Boreal). Green tones: Improvement; yellow tones: status quo; red tones: decline. Results are compiled 
under the RCP 4.5 and RCP 8.5 climate scenarios. Modified from Boulanger et al. (2021). Bars only show 

when at least 40% of the models agreed for a given species and cell. As such, overall agreement was low for 
sugar maple and yellow birch in the boreal region, especially under RCP 4.5.   
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Figure 4. Impacts of climate scenarios (baseline, RCP 4.5 and RCP 8.5) on various ecosystem services as 
assessed in the RIA. All results considered the cumulative effects of climate change and business-as-usual 
forest management strategy. Analyses in i and iii were not conducted under RCP 4.5. Results in vi and vii 

are plotted relative to a reference scenario, i.e., under baseline climate conditions without forest 
management (“conservation”). For x and xi, bird abundance is expressed for species either associated with 
closed mature softwood forests and generalists. HSI: Habitat suitability index, unitless; P(yes): Probability 
to fulfill family's needs (with no need to adapt). Readers can refer to figure 1 for study locations. i) and iii) 
from Cyr et al. (2021); ii) and iv) from Forestier en Chef (2021a); v) from Landry et al. (2021); vi) and vii) 

from Moreau et al. (2021); viii) from Leblond et al. (2022); ix) from Labadie (2022); x) and xi) from 
Labadie et al. in prep.; xii) and xiii) from Belisle (2022). 
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Figure 5. Impacts of forest management adaptation strategies on various ecosystem services as assessed in 
the RIA under baseline, RCP 4.5 and RCP 8.5 climates. The simulated forest management scenarios were 

classified as “Conservation” (e.g., stopping harvest), “Reduction” (e.g., create conservation areas, 
lengthening harvest rotation, reduce harvesting rates, increase partial harvesting); “business-as-usual” 
(e.g., current forest management strategies), “Intensification” (e.g., increased plantation efforts, higher 

harvesting rates), and “Mixed” (e.g., strategies that mix both “Reduction” and “Intensification” strategies). 
Not all studies included all scenarios. Results are plotted relative to a reference scenario, i.e., under baseline 
climate conditions and business-as-usual forest management. P(yes): Probability to fulfill a family's needs 
(with no need to adapt).  Readers can refer to figure 1 for study locations. i) and ii) from Cyr et al. (2021); 
iii) from FEC (2021); iv) and v) from Moreau et al. (2021); vi) from Leblond et al. (2022); vii) and viii) from 

Labadie et al., in prep.; ix) and x) from Belisle (2022). 
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